Tensor Extraction of Latent Features (T-ELF) is one of the machine learning software packages developed as part of the R&D 100 winning SmartTensors AI project at Los Alamos National Laboratory (LANL). T-ELF presents an array of customizable software solutions crafted for analysis of datasets.
We propose an efficient, distributed, out-of-memory implementation of the truncated singular value decomposition (t-SVD) for heterogeneous (CPU+GPU) high performance computing (HPC) systems. Various implementations of SVD have been proposed, but most …
Non-negative matrix factorization (NMF) with missing-value completion is a well-known effective Collaborative Filtering (CF) method used to provide personalized user recommendations. However, traditional CF relies on the privacy-invasive collection …
The need for efficient and scalable big-data analytics methods is more essential than ever due to the exploding size and complexity of globally emerging datasets. Nonnegative Matrix Factorization (NMF) is a well-known explainable unsupervised …