GPU

Distributed out-of-memory NMF on CPU/GPU architectures

We propose an efficient distributed out-of-memory implementation of the non-negative matrix factorization (NMF) algorithm for heterogeneous high-performance-computing systems. The proposed implementation is based on prior work on NMFk, which can …

Distributed Out-of-Memory SVD on CPU/GPU Architectures

We propose an efficient, distributed, out-of-memory implementation of the truncated singular value decomposition (t-SVD) for heterogeneous (CPU+GPU) high performance computing (HPC) systems. Various implementations of SVD have been proposed, but most …

Distributed Out-of-Memory NMF of Dense and Sparse Data on CPU/GPU Architectures with Automatic Model Selection for Exascale Data

The need for efficient and scalable big-data analytics methods is more essential than ever due to the exploding size and complexity of globally emerging datasets. Nonnegative Matrix Factorization (NMF) is a well-known explainable unsupervised …