With the increasing number and sophistication of malware attacks, malware detection systems based on machine learning (ML) grow in importance. At the same time, many popular ML models used in malware classification are supervised solutions. These supervised classifiers often do not generalize well to novel malware. Therefore, they need to be re-trained frequently to detect new malware specimens, which can be time-consuming. Our work addresses this problem in a hybrid framework of theoretical Quantum ML, combined with feature selection strategies to reduce the data size and malware classifier training time.
Tensors, Machine Learning, AV, Malware
Liu, R., Eren, M. E., and Nicholas, C. (2022). Can Feature Engineering Help Quantum Machine Learning for Malware Detection?. Presented at the 13th Annual Malware Technical Exchange Meeting, Online, 2022.
@misc{Liu2022MTEM,
title={Can Feature Engineering Help Quantum Machine Learning for Malware Detection?},
author={R. {Liu} and M. E. {Eren} and C. {Nicholas}},
year={2022},
note={Presented at the 13th Annual Malware Technical Exchange Meeting, Online, 2022}
}