
Classifying Malware using Tensor Decomposition

Maksim E. Eren1,3, Boian S. Alexandrov2, and Charles Nicholas3

1 Advanced Research in Cyber Systems, Los Alamos National Laboratory
maksim@lanl.gov

maksimeren.com
2 Theoretical Division, Los Alamos National Laboratory

boian@lanl.gov
3 Computer Science and Electrical Engineering, University of Maryland Baltimore

County
nicholas@umbc.edu

Abstract. Tensor decomposition is as a powerful unsupervised machine
learning technique capable of modeling multi-dimensional data, including
that related to malware. This chapter discusses a method that employs
tensor decomposition for malware analysis. We introduce an innovative
ensemble semi-supervised classification algorithm named Random Forest
of Tensors (RFoT). RFoT leverages tensor decomposition to extract in-
tricate latent patterns from the data. Our hybrid model combines multi-
dimensional analysis with clustering to capture sample groupings within
latent components, aiding in distinguishing between malware and benign-
ware. The patterns extracted from malware data using tensor decomposi-
tion heavily rely on the configuration of the tensor, including dimension,
entry, and rank selection. To encompass diverse perspectives offered by
different tensor configurations, we adopt the ’wisdom of crowds’ philos-
ophy. This involves leveraging decisions made by the majority within
a randomly generated ensemble of tensors, varying in dimensions, en-
tries, and ranks. We illustrate RFoT’s effectiveness in classifying Win-
dows Portable Executable (PE) malware and benign-ware. To promote
the utility of tensor decomposition for malware analysis and ensure the
reproducibility of our results, we have made our code publicly available.

Keywords: malware analysis · tensor decomposition · semi-supervised

1 Introduction

1.1 Motivation for Automated Malware Detection

Malware is a broad term encompassing any unwanted software designed to
steal personal or confidential information or cause harm to a system upon de-
ployment. Recent cyber reports rank malware as one of the most costly and
frequent cyber threats [Bissell and Ponemon(2019)]. Detection of cyber anoma-
lies, including malware network traffic, continues to be a significant challenge
for cyber defenders. In general, organizations report an annual cost of malware
at $2.5 million [Bissell and Ponemon(2019)], while a single ransomware breach

maksimeren.com

2 Eren et al.

totals nearly $4.62 million [IBM(2019)]. Simultaneously, the quantity of mal-
ware in circulation continues to escalate rapidly. Approximately 13.5 million new
malware specimens and unwanted applications are reported monthly, accumu-
lating to nearly 1.3 billion known malware specimens in 2022 [The Independent
IT Security Institute(2022)]. This swift proliferation in malware volume is ac-
companied by increasing sophistication and threat capabilities, intensifying the
challenge of defending against malware [Labs(2020),Verizon(2021)]. The escalat-
ing capabilities, sophistication, cost, and volume of malware, coupled with the
shortage of experienced malware analysts to address the overwhelming number of
malware attacks, drive the necessity to employ automated defense systems based
on Machine Learning (ML) to combat malware. ML facilitates early detection
and reduces response times, enabling automation to cut the cost of a security
breach by 80% [IBM(2019),Bissell et al.(2020),Bissell and Ponemon(2019)].

ML-based malware detection utilizes two categories of features: Dynamic
malware analysis-based features are gathered at runtime and frequently encom-
pass system calls, file system events, network activities, and process behavior.
In contrast, static malware analysis-based features are derived directly from the
contents of an executable binary, such as the Portable Executable (PE) header,
strings, code, and raw bytes. The static malware features can be extracted from
a specimen without requiring binary execution. Dynamic analysis-based features
typically offer a more detailed view of malware behavior and are less suscepti-
ble to potential obfuscations and packing techniques [Sikorski and Honig(2012)].
However, obtaining dynamic features presents several challenges. Dynamic fea-
tures necessitate executing the malware within a resource-intensive isolated sand-
box environment, often resulting in a slow feature collection process. Addition-
ally, certain types of malware are capable of detecting the presence of a sandbox
and modifying their behavior accordingly [Raff et al.(2018)]. Despite potential
shortcomings, static malware features remain an effective means to detect and
characterize malware. We refer the reader to [Sikorski and Honig(2012)] for more
details on classical malware analysis. This chapter discusses a semi-supervised
malware classification method applied to static malware analysis-based features,
specifically focusing on Windows PE header features. More precisely, we present
malware classification methods that utilize tensor decomposition, wherein mal-
ware data is represented within a multi-dimensional space.

1.2 Motivation on Using Tensor Decomposition for Malware
Detection

Tensor decomposition is a powerful unsupervised ML method capable of ex-
tracting multifaceted latent patterns from large and complex datasets. In con-
trast to classical ML methods, which often operate as black-box systems, tensor
decomposition yields interpretable results. This attribute makes it an effective
tool for incident responders seeking to validate alerts generated by automated
incident detection systems (IDS). Furthermore, given the continuous genera-
tion of new malware variants by malicious authors [Raff and Nicholas(2020)],
ML models utilized in malware identification must effectively generalize well to

Classifying Malware using Tensor Decomposition 3

new threats. However, many prevalent ML models struggle to generalize to new
data. Moreover, supervised ML models demand substantial quantities of labeled
training data to achieve desired levels of performance in operation. This poses a
significant challenge within the malware domain, where acquiring labeled mal-
ware data is both costly and time-consuming [Raff and Nicholas(2020)]. Semi-
supervised methods, including the algorithm presented in this chapter, can mit-
igate these shortcomings. They hold the potential for enhanced generalizability
to new data and the ability to achieve robust performance with limited labeled
data quantities. Despite the potential advantages of semi-supervised solutions,
the broader research community has not extensively explored their application
in Windows malware detection [Raff and Nicholas(2020)]. Addressing this gap
in malware research, we present a semi-supervised algorithm based on tensor
decomposition tailored for classifying Windows malware.

1.3 Chapter Contributions

Malware data naturally exists in multiple dimensions, enabling the construc-
tion of a multi-dimensional representation using tensors. These representations
can be analyzed using tensor decomposition methods. Within this chapter, we
introduce an ensemble semi-supervised classification algorithm called Random
Forest of Tensors (RFoT). RFoT effectively utilizes tensor decomposition’s capa-
bility to extract significant patterns from multi-dimensional malware data. Our
analysis reveals that both malware and benign samples form distinct clusters
within and among the latent components identified through tensor decompo-
sition. To capture these groupings, we employ clustering methods and execute
semi-supervised class voting for each unknown specimen grouped within a clus-
ter, using known samples from the same cluster as a reference point. We elimi-
nate noisy clusters based on a cluster uniformity threshold calculated using the
known specimens. The extracted latent patterns heavily rely on the tensor’s
configuration, including dimension, entry, and rank selection. RFoT operates on
the principle of the ’wisdom of crowds.’ The final class prediction is derived
through a max-vote mechanism, aggregating votes received from each randomly
generated ensemble of tensor configurations varying in dimensions, entries, and
ranks.

In this chapter, we investigate the malware classification performance of
RFoT using two distinct tensor decomposition algorithms: CANDECOMP/PARAFAC
Alternating Least Squares (CP-ALS) [Battaglino et al.(2018),Bader and Kolda(2006),
Kolda and Bader(2009)], and CANDECOMP/PARAFAC Alternating Poisson
Regression (CP-APR) [Chi and Kolda(2012)] tensor decomposition. Addition-
ally, we compare Mean Shift (MS) [Fukunaga and Hostetler(1975), Wu and
Yang(2007), Jin and Han(2017), Pedregosa et al.(2011)] and Component Clus-
tering algorithms utilized to capture patterns from latent factors. In our ex-
periments, we employ Windows Portable Executable (PE) file features of mal-
ware and benign-ware sourced from the EMBER-2018 dataset [Anderson and
Roth(2018)]. Specifically, we create 10 random subsets, each comprising 10,000
PE files, and conduct experiments within each random subset. This approach

4 Eren et al.

demonstrates the statistical significance of our results using 95% confidence
intervals. We benchmark our method against the tuned XGBoost [Chen and
Guestrin(2016)] and LightGBM [Ke et al.(2017)] models, previously employed
in research reporting high classification scores. Additionally, we compare our re-
sults against the SelfTrain extended XGBoost model, which establishes a semi-
supervised learner [Yarowsky(1995)].

Our findings demonstrate that our semi-supervised method outperforms state-
of-the-art supervised models, achieving an F1 score of 0.968 in classifying mal-
ware. This performance improvement comes with a trade-off involving a reduced
number of predicted labels due to abstaining predictions (i.e., predicting ”we do
not know what class this is”). To the best of our knowledge, we are the first to
formulate a tensor-based semi-supervised classifier within an ensemble learning
framework for classifying Windows malware.

1.4 Code and Data Availability

To enable the reproducibility of our results and to provide an operationally-
relevant tool, we have released RFoT on GitHub4. Our Python library follows the
well-known Scikit-learn API to ease the usage of RFoT [Buitinck et al.(2013),Pe-
dregosa et al.(2011)]. The RFoT Python library also includes the Python imple-
mentation of the CP-ALS algorithm which was originally released in MATLAB
Tensor Toolbox [Bader et al.(2017),Harris et al.(2020)]. For the CP-APR algo-
rithm, which was also originally introduced in MATLAB Tensor Toolbox [Bader
et al.(2017),Hansen et al.(2015)], we use the latest Python implementation of the
CP-APR algorithm with GPU capability, named pyCP APR5, as a dependency
in the RFoT library [Eren et al.(2022),Eren et al.(2021)]. Further, to reduce the
computation time, the RFoT library utilizes embarrassingly parallel decomposi-
tion of each random tensor member in the ensemble. Finally, the dataset used to
demonstrate the capabilities of the method introduced in this chapter, namely
the EMBER-2018 dataset6 [Anderson and Roth(2018)], is publicly available.

2 Related Work

2.1 Machine Learning Based Malware Classification

ML-based automated detection and characterization of malware has been
a longstanding area of research. Deep learning has proven to be an effective
method for classifying malware in a supervised manner. Vinayakumar et al. uti-
lized shallow neural networks to detect malware using PE header features [R.
and K.P.(2018)]. Similarly, Fabian et al. employed neural networks, designing
their method for use in environments with limited computational resources [Fon-
seca A et al.(2021)]. In contrast to these approaches that utilize a selected set

4 RFoT is available at https://github.com/MaksimEkin/RFoT
5 pyCP APR is available at https://github.com/lanl/pyCP_APR
6 EMBER-2018 dataset is available at https://github.com/elastic/ember

https://github.com/MaksimEkin/RFoT
https://github.com/lanl/pyCP_APR
https://github.com/elastic/ember

Classifying Malware using Tensor Decomposition 5

of static malware features, Raff et al. introduced a deep learning architecture
named MalConv, aiming to classify malware directly based on the entire raw
byte-sequences of the binary [Raff et al.(2018)]. These methods leverage static
malware analysis-based features for malware classification. While static mal-
ware features can effectively identify malicious files, dynamic malware features
can offer additional insights into the executable. Vinayakumar et al. adopt a
multi-modular approach using Deep Neural Networks (DNN), performing clas-
sification using features from static analysis, dynamic analysis, and gray-scale
malware images [Vinayakumar et al.(2019)].

Several prior studies have focused on malware detection using images gen-
erated from malware [Liu et al.(2017), Yan et al.(2018), Narayanan and Davu-
luru(2020),Yuan et al.(2020),Liu et al.(2020)]. This includes research on classi-
fying malware visualizations utilizing an ensemble of random forests [Roseline
et al.(2019)], as well as another study employing a semi-supervised approach
to cluster gray-scale malware images [Abdelmonem et al.(2021)]. Additionally,
Wang et al. utilized a semi-supervised approach with gray-scale malware im-
ages [Wang et al.(2021)]. In their research, byte n-grams were translated into
fixed-size gray-scale image vectors as training features. Wang et al. perform clas-
sification with the gray-scale image vectors using a 1-dimensional Convolutional
Neural Network (CNN), a supervised deep learning method, that is strengthened
using a semi-supervised Generative Adversarial Network (SGAN).

Previous studies have also examined classical ML methods for malware clas-
sification. Kumar et al. demonstrated that XGBoost is an effective model for
classifying Windows PE malware, achieved through low-resource feature se-
lection [Kumar and Geetha(2020)]. Pham et al., also using the EMBER-2018
dataset, illustrated that statistical summaries of the original PE features can
enhance detection results. They employed LightGBM, which surpassed the pre-
viously introduced deep learning solution MalConv while requiring fewer re-
sources [Pham et al.(2018)].

The majority of the aforementioned work, which reported excellent malware
detection capabilities, is based on supervised learning. However, supervised mod-
els often encounter performance degradation in production when confronted with
specimens that do not conform to the same distribution observed during train-
ing. Qi et al. tackled this issue by integrating an unsupervised domain adapta-
tion technique based on adversarial learning into LightGBM for static malware
detection [Qi et al.(2021)]. Their approach extends LightGBM to learn domain-
invariant features by using the predictions generated from each decision tree in
the model as a feature space, subsequently employing these features as input
into the adversarial learning framework.

Another area that has garnered increasing interest is the application of en-
semble learning to augment the predictive capabilities of malware classifiers. In
pursuit of this, previous research has delved into an ensemble approach for Win-
dows malware classification utilizing static features. Atluri demonstrated that
various tree-based ensemble models, such as Random Forests, Bagging Decision
Tree Classifier, and Gradient Boosting Classifier, among others, can be used

6 Eren et al.

together in a single framework, named Voting Ensemble Classifier (VEC), to
achieve enhanced detection of Windows PE malware [Atluri(2019)]. Similarly,
Ramadhan et al. explored a comparable method by creating a voting-based en-
semble model employing LightGBM, XGBoost, and Logistic Regression [Ramad-
han et al.(2021)]. Their study showed that an ensemble comprising classifiers,
each with its distinct inductive biases, could result in increased accuracy com-
pared to any individual model alone, as each member of the ensemble comple-
ments the weaknesses of others. Additionally, the framework of ensemble learning
has been applied in the realm of deep learning for malware detection by Dahl
et al. [Dahl et al.(2013)]. The authors demonstrated that an ensemble of neural
networks employing voting, alongside a novel feature selection method based on
dimensionality reduction and random projections, significantly improves mal-
ware identification.

While the aforementioned prior work on ensemble learning utilized the voting
method, Azeez et al. adopted a stacking approach employing an ensemble of
CNNs to create a derived dataset based on the decisions made by the base
models. This derived dataset was then used as input to the final prediction layer,
incorporating an ExtraTrees classifier to enhance prediction accuracy [Azeez
et al.(2021)]. Similarly, Gupta et al. also applied a stacking approach employing
an ensemble of diverse supervised classifiers [Gupta and Rani(2020)]. However, in
contrast, Gupta et al. meticulously selected the best-performing classifiers within
the ensemble by initially ranking them based on their performance. Subsequently,
the highest-ranking base models were integrated into the stacking ensemble layer,
further enhancing the capability for malware detection.

Clustering has been integrated into ensemble learning frameworks for mal-
ware identification as well. Ye et al. presented a hybrid framework that constructs
base clusters from an ensemble of clustering algorithms separately applied to TF-
IDF, built from instruction frequency and instruction n-grams [Ye et al.(2010)].
This approach utilizes an ensemble of clustering algorithms with distinct char-
acteristics, such as hierarchical clustering and weighted subspace K-medoids,
to form the base clusters. These clusters are then utilized to extract the sig-
natures that differentiate malware families. Similarly, Zhang et al. proposed a
similar framework based on an ensemble of hybrid clustering algorithms [Zhang
et al.(2017)].

Similar to clustering ensembles, distance metrics have been incorporated
within an ensemble learning structure. Kong et al. utilized similarity metrics
between pairs of malware to categorize malware families [Kong and Yan(2013)].
The authors derived similarity measurements using a distinct set of features such
as opcodes, system calls, and file system activity. These new distance-based fea-
ture vectors, each derived from different malware features, were then employed
to train an ensemble of classical ML models. Additionally, a similarity-based
approach was previously employed by Raff et al., where they introduced the
Burrows Wheeler Markov Distance (BWMD), an efficient similarity metric. This
metric is based on embedding data into a fixed-size vector space, demonstrating
its effectiveness in clustering malware [Raff et al.(2020)]. Finally, the malware

Classifying Malware using Tensor Decomposition 7

similarity for clustering IoT malware in an unsupervised manner was presented
in [Bak et al.(2020)].

While several other works have examined supervised approaches [Huang and
Stokes(2016),Jiang et al.(2019),Vinayakumar et al.(2019),Zhang et al.(2019),Loi
et al.(2021),Sun et al.(2017),Ahmadi et al.(2016),Mohaisen et al.(2015),Hansen
et al.(2016)], we draw inspiration from previous advancements and successes in
ensemble learning and clustering methodologies. Our framework leverages en-
semble learning and clustering techniques in multidimensional analysis through
tensor decomposition. This approach combines the potency of tensor decomposi-
tion with ensemble learning. Furthermore, driven by the anticipated advantages,
we structure our tensor decomposition-based solution within a semi-supervised
methodology. The most analogous work to ours, concerning semi-supervised
learning, was conducted by Irofti et al., who proposed a semi-supervised solu-
tion using Dictionary Learning (DL) for classifying Windows PE malware [Irofti
and Băltoiu(2019)]. Their framework initially trains a dictionary in a supervised
manner, facilitating the intermittent classification of new malware instances,
subsequently updating the dictionary with signals from new malware in an un-
supervised online fashion. However, DL is based on matrix factorization, which
is constrained by the information conveyed in a two-dimensional space. Simi-
lar to [Irofti and Băltoiu(2019)], Non-negative Matrix Factorization, or NMF,
has also been applied to the malware/benign-ware classification problem where
Ling et al. derive similarity scores of structural patterns extracted with NMF to
detect metamorphic malware (malware with the capability to modify its code
during run-time) using static analysis features [Ling et al.(2019)].

In contrast, our approach employs tensors to model data in a higher-dimensional
space. Each dimension allows for the inclusion of more intricate details about the
nature of the data, resulting in the extraction of complex and multi-perspective
information. Given the capacity for acquiring nuanced insights from data through
multi-dimensional analysis, recent studies have employed tensors in addressing
cybersecurity problems.

2.2 Tensor Decomposition and Cybersecurity

Data relevant to cybersecurity problems often exhibit a multi-dimensional na-
ture, making tensors an ideal tool for analyzing cyber data. Several prior works
have employed tensor decomposition to address cybersecurity issues in an un-
supervised manner. The CANDECOMP/PARAFAC Decomposition (CPD) has
emerged as a popular tool for identifying various types of outliers or anomalies
in cyber data [Koutra et al.(2012),Maruhashi et al.(2011)].

Bruns et al. utilized non-negative tensor decompositions, particularly the CP-
APR algorithm, to discern patterns of malicious network activity [Bruns-Smith
et al.(2016)]. The authors leveraged the interpretability of tensor decomposition
results, visually analyzing the latent factors, and successfully identified distinct
stages of a cyber breach, including reconnaissance, brute-forcing, data exfiltra-
tion, and insider threats.

8 Eren et al.

Subsequently, the integration of CP-APR with a statistical framework has
demonstrated effectiveness in enhancing automatic anomaly detection capabili-
ties. This method exhibited proficiency in identifying compromised user creden-
tials, botnet network traffic, spam emails, and fraudulent credit card transac-
tions [Eren et al.(2020), Eren et al.(2022)]. Moreover, CP-APR was employed
to detect cyber anomalies by utilizing High-Performance Computing (HPC) re-
sources for conducting embarrassingly parallel graph analytics within the latent
components [Ezick et al.(2019)]. In [Eren et al.(2022)], botnet network traffic
from the UGR’16 dataset [Maciá-Fernández et al.(2018)]7 was identified using
non-negative tensor decomposition within a statistical framework based on user
behavior analysis. Here, the patterns of normal or expected network traffic were
modeled with CP-APR. During testing, this model, utilizing latent components
extracted by factorizing the data from expected behavior, identified deviations
from the norm via Poisson p-values, where lower p-values were used as an in-
dicator of an anomaly or botnet network traffic. The analysis incorporated IP
addresses of the network communication and temporal information as tensor
dimensions. The study showcased how the unsupervised tensor decomposition-
based method surpasses the anomaly detection capabilities of several state-of-
the-art supervised and semi-supervised approaches.

The Tucker tensor decomposition has also emerged as a popular algorithm
in addressing cybersecurity issues. Kanehara et al. utilized non-negative Tucker
tensor decomposition with thresholding across latent factors to enable real-time
botnet detection within the darknet [Kanehara et al.(2019)]. Similarly, Tork et al.
employed Tucker tensor decomposition on a three-dimensional tensor to identify
telecommunication anomalies [Fanaee-T et al.(2014)].

Xie et al. introduced a tensor truncating algorithm for rapid low-rank Tucker
decomposition of tensors. They utilized reconstruction error as a metric for de-
tecting network anomalies [Xie et al.(2017)]. Additionally, Sun et al. tackled
the network anomaly detection problem by employing a dynamic Tucker tensor
decomposition approach tailored for handling large-scale streaming data [Sun
et al.(2006)].

In classical ML, ensemble learning has proven to significantly enhance indi-
vidual model capabilities. Motivated by this, there has been growing exploration
of ensemble learning in the tensor domain. Kisil et al. were among the first to ap-
ply an ensemble learning approach in multi-dimensional space [Kisil et al.(2018)].
They utilized an ensemble of latent factors extracted via tensor decomposition
to train classical ML models, combining hypotheses from each tensor decompo-
sition and ML model.

Similarly, Hou et al. introduced a framework employing tensor decompo-
sition in an ensemble setting to classify Android malware [Hou et al.(2017)].
This involved utilizing application permissions, API calls, and hardware speci-
fications as features to construct a tensor. Tensor Filter was then employed in
a recursive boosting approach to generate an ensemble of base models. Their
study demonstrated that the ensemble approach, coupled with tensor decompo-

7 The UGR’16 dataset is available at https://nesg.ugr.es/nesg-ugr16/

https://nesg.ugr.es/nesg-ugr16/

Classifying Malware using Tensor Decomposition 9

sition, markedly enhances malware detection capabilities compared to classical
ensemble models.

Another prior work also utilized an ensemble approach to demonstrate how
anomaly detection capabilities can be enhanced, showcasing that an ensemble
of tensors with varying ranks can augment anomaly detection capabilities using
statistical p-value fusion techniques [Eren et al.(2022)].

The outcomes derived from the aforementioned prior studies heavily depend
on the selection of tensor rank, dimensions, and entries. Crafting an appropriate
tensor that yields favorable results upon decomposition presents a non-trivial
challenge due to various factors. Firstly, determining the rank of a tensor is
known to be NP-hard [Kolda and Bader(2009)]. Additionally, while constructing
a tensor that carries intuitive significance might be feasible, choosing the most
suitable features for tensor dimensions and entries often demands thorough in-
vestigation. This process typically involves trial and error, experimenting with
different feature combinations.

For instance, several previous studies utilized source IP, destination IP, and
temporal information as tensor dimensions for network traffic data (Netflow).
However, Netflow data encompasses numerous other potential features like bytes
transferred, packet counts, source and destination port numbers, and connection
durations, among others. Simultaneously, the choice of tensor entry could involve
binary values, counts, or other Netflow features. Thus, the process of selecting
the optimal feature combinations to define a tensor’s dimensions and entries
from a multitude of possibilities poses an exponential scale problem.

In our forthcoming methodology, presented in this chapter, we propose that
employing an ensemble of randomized tensor configurations eliminates the ne-
cessity of identifying a single tensor with optimal dimensions and entry. Before
introducing our framework, we initiate the next chapter by summarizing tensor
notation as preliminary information.

3 Tensor Decomposition Notation

Tensor decomposition is a potent data analysis method capable of extracting
intricate patterns from data in an unsupervised manner. By utilizing tensors,
data can be represented in a multi-dimensional space, allowing for the simul-
taneous exploration of natural relations among each dimension. This higher-
dimensional and more complex representation facilitates the discovery and inter-
pretation of hidden, multi-perspective information within the data. This section
aims to summarize the tensor notations, which will be useful for understand-
ing the later introduction of RFoT in this chapter. A summary of the notations
utilized in this chapter can be found in Table 1.

Tensors represent a higher-order extension of matrices and enable the repre-
sentation of multi-dimensional data. A first-order tensor corresponds to a vector,
an order-2 tensor is referred to as a matrix, and any structure with dimensions
ranging from 3 through D is denoted as a tensor. Specifically, a D-dimensional
tensor is termed an order-D tensor, with each dimension also being named the

10 Eren et al.

Table 1. Summary of the notations used in this chapter.

Notation Description

x Scalar
x Vector
X Matrix
XXX Tensor
xi ith element in the vector
Xi,j Entry located in row i and column j
Xi: ith row
X:j jth column

XXX(i) Superscript (i) used to identify the ith random tensor
XXX::j jth slice of a tensor
◦ Outer product

mode of the tensor. For instance, the first dimension of a tensor is also known
as the first mode.

To illustrate the construction of a tensor, let’s first consider matrices within a
lower-dimensional space. For instance, a matrix X can represent a bag of words
extracted from a collection of scientific papers, possessing dimensions Documents
- Words with a shape of NDocuments × NWords. In this matrix, an entry Xi,j

signifies the number of times word j appears in document i.
Utilizing tensors allows for the creation of a higher-dimensional representa-

tion of the data. Taking the example of scientific papers and including additional
information such as the publication year for each paper, we can represent this
data as an order-3 tensor XXX with dimensions Documents - Words - Time and a
shape of NDocuments ×NWords ×NTime. In this tensor, an entry XXXi,j,k denotes
the frequency of word j appearing in document i at time k (for instance, by
year).

We can extend this example from a 3-dimensional tensor to a D-dimensional
tensorXXX ∈ IRN1xN2x···xND , where an entry in the tensor is denoted asXXXi1, i2, · · · , iD
and the indexing ranges of each mode are i1, i2, · · · , iD ∈ [0 ≤ i1 < N1, 0 ≤ i2 <
N2, · · · , 0 ≤ iD < ND]. To facilitate notation, we adopt the multi-index notation
and use i to represent the indexing of D modes, such that i = i1, i2, · · · , iD and
XXXi denotes the tensor entry [Chi and Kolda(2012),Hong et al.(2020)].

Let nnz(XXX) represent the set of all non-zero entries in the tensor XXX, and let
Ω denote the set of all entries, including the zeros, indicating that we have a
sparse tensor when nnz(XXX) < |Ω| [Chi and Kolda(2012)]. Here, |Ω| denotes the
size of the tensor and is calculated as follows:

|Ω| =
D∏

d=1

Nd (1)

We can use the number of non-zeros and the size of the tensor XXX to calculate
the sparsity of the tensor as follows:

η =
nnz(XXX)

|Ω|
(2)

Classifying Malware using Tensor Decomposition 11

Tensors generated from cyber data often exhibit both extreme sparsity and
substantial size. For instance, tensors derived from cyber Netflow data can
demonstrate sparsity as low as η = 10−8 [Eren et al.(2020)]. In the context
of Netflow data, the tensor’s dimensions might represent the source and desti-
nation devices and the timing of network communication events. As illustrated
in Figure 1, we depict a tensor with dimensions User -Source-Destination, where
each entry signifies a user engaging in an authentication activity from a source
device to a destination device. Due to the limited communication between most
devices within a network, tensors derived from Netflow data often display spar-
sity (as demonstrated in Figure 1). Similarly, diverse malware features, such as
file size, number of sections, and timestamps, can function as dimensions in the
tensor. Each specimen’s feature space aligns with a single index along each tensor
dimension, akin to the Netflow example, leading to a sparse tensor.

User

0
2000

4000
6000

8000
10000

Sou
rce

0
2000

4000
6000

8000
10000

12000
14000

D
es

tin
at

io
n

0

1000

2000

3000

4000

Background Traffic
Anomaly

Fig. 1. Binary tensor with the dimen-
sions User - Source - Destination. The
background traffic is shown with gray
and anomalies are highlighted in red.

Leveraging the sparsity of tensors of-
fers an opportunity to circumvent stor-
ing the entire tensor in memory, a chal-
lenge posed by their substantial size. In-
stead, the tensor can be stored in a Coor-
dinate (COO) format, which comprises a
list of non-zero coordinates and their cor-
responding non-zero values. In the COO
format, each coordinate represents the
indexing i, while each non-zero value cor-
responds to the entry XXXi.

The higher-order representation of
data using tensors allows for the analy-
sis of concealed information within the
data by considering interactions simulta-
neously across each dimension, thus fa-
cilitating the extraction of intricate and
multifaceted details. Two widely used
tensor decomposition algorithms for fac-
torizing tensors are the Tucker and CANDECOMP/PARAFAC Tensor Decom-
position (CPD) [Kolda and Bader(2009)]. In this chapter, we utilize CPD to
extract latent patterns from malware data. CPD compresses the D-dimensional
tensorXXX into lower-dimensional R rank-1 tensors, also referred to as components,
aiming to approximate the original tensor’s sum with the R rank-1 tensors:

XXX ≈
R∑

r=1

λr · a(1)r ◦ a(2)r ◦ · · · ◦ a(D)
r (3)

Here, ◦ denotes the outer product. The latent factors a(d)r correspond to
each dimension d, where 1 ≤ d ≤ D, and the rth component, where 1 ≤ r ≤ R,
describes the latent information for the given dimension. Each a(d)r is normal-
ized to sum up to 1, and the weight is absorbed by each λr. An illustration
of CPD is provided in Figure 2 for a 3-dimensional tensor. The tensor rank R

12 Eren et al.

Fig. 2. Illustration of CPD on a 3-dimensional tensor

is a hyperparameter selected by the user. Determining the rank R of a tensor
is known to be NP-Hard [Kolda and Bader(2009)]. CPD can be expressed in a
more concise format using the KRUSKAL notation as follows:

XXX ≈MMM ≡ Jλ ; A(1),A(2), · · · ,A(D)K (4)

Here the KRUSKAL tensor MMM is the low-rank approximation of XXX. Each
A(d) is a matrix of latent factors for dimension d. A(d)

:r is the rth latent factor

for dimension d with size Nd such that we can write A(d) as follows:

A(d) = [a
(d)
1 ,a

(d)
2 , . . . ,a

(d)
R] (5)

Within each latent factor matrix MMM:: d− 1 = A(d) for dimension d, linearly
dependent columns A(d): r can be present for each r [Kolda and Bader(2009)].

However, when considering all latent factor matrices A(1,2,··· ,D) together, the
CPD solution is almost always unique [Qi et al.(2016),Kolda and Bader(2009)].
The uniqueness of CPD allows each component to represent distinct events or
characteristics of the data. Therefore, the results obtained from CPD provide
interpretable outcomes when examining each component individually.

In this chapter, we employ two popular tensor decomposition algorithms with
different properties to heuristically test RFoT’s malware classification capabil-
ity. The first one is the CANDECOMP/PARAFAC Alternating Least Squares
(CP-ALS) tensor decomposition algorithm [Battaglino et al.(2018), Bader and
Kolda(2006),Kolda and Bader(2009)]. To fit the tensor XXX, CP-ALS performs up-

dates using least squares by alternating between each latent factor matrix A(d),
while fixing the remaining A(d−1) factor matrices until convergence to solve the
following optimization function:

min
A(d)

||XXX−MMM||2 (6)

The second tensor decomposition algorithm used in our studies is CANDE-
COMP/PARAFAC Alternating Poisson Regression (CP-APR), a non-negative
tensor decomposition method that minimizes Kullback-Leibler (KL) divergence
via an updated Multiplicative Update (MU) algorithm [Chi and Kolda(2012)].
The CP-APR algorithm includes a non-negativity constraint, which allows the

Classifying Malware using Tensor Decomposition 13

latent factors to be additive parts of the original data, resulting in improved
interpretability. In CP-APR, the tensor is modeled under a Poisson distribution
with the Poisson rate parameter γ > 0 as follows:

XXXi ∼ Poisson(γi) (7)

The CP-ALS algorithm was initially included in the widely used MATLAB
Tensor Toolbox [Bader et al.(2017)]. With RFoT, we introduce a Python im-
plementation of CP-ALS 8, utilized in our experiments. For the CP-APR al-
gorithm, we utilize an existing Python implementation with GPU capabili-
ties that was previously introduced [Eren et al.(2022), Eren et al.(2021)]. For
further information on tensors, we recommend [Kolda and Bader(2009), Ra-
banser et al.(2017)]. More details regarding the CP-APR algorithm can be found
in [Chi and Kolda(2012)], and additional information about CP-ALS is available
in [Battaglino et al.(2018)].

4 Semi-Supervised and Ensemble Methodology

We next present the RFoT methodology.

4.1 Clustering Specimens Over the Latent Components

We find that malware and benign-ware samples can be separated in an unsu-
pervised manner using tensor decomposition. This section begins by delineating
the necessary tensor configuration essential for extracting sample groupings from
a tensor decomposition. Moreover, we present concrete instances of clusters rep-
resenting malware and benign-ware within the latent factors. We then summarize
the clustering methods used in RFoT to capture the patterns formed in the latent
factors.

Sample
0.000
0.001
0.002
0.003
0.004
0.005
0.006

Benign Malware

Fig. 3. Clean malware and benign-ware clusters found by tensor decomposition

8 CP-ALS is available at https://github.com/MaksimEkin/RFoT

https://github.com/MaksimEkin/RFoT

14 Eren et al.

Sample
0.0020
0.0015
0.0010
0.0005
0.0000
0.0005
0.0010

Benign Malware

Fig. 4. Clean malware clusters and noisy benign-ware clusters found by tensor decom-
position

Malware Patterns in the Latent Factors: In order to extract latent factors
with the capability of describing malware and benign-ware patterns based on
each sample individually, we set our first dimension of the tensor XXX to repre-
sent each malware sample while selecting the remaining of the D−1 dimensions
and the tensor entry from static-malware-analysis based features using the PE
header. We give a detailed description of how the remaining D− 1 is configured
to build the tensor from PE features in Section 4.2. In this tensor configuration,
the shape of XXX is N1 × N2 × · · · × ND, where N1 is the total number of mal-
ware and benign-ware files from our dataset. For example, to access the tensor
entry of the first specimen from the dataset, for features that are indexing at
i2, · · · , iD, we would index the tensor as XXX0,i2,··· ,iD . Because the first dimen-
sion of XXX represents the samples, the obtained latent factor matrix for mode-1
is MMM::0 = A(1) ∈ IRN1 xR, where R is the tensor rank and A(1) carries latent
information regarding the samples in our data. Using A(1), we can access each
individual latent factor A(1)

:r ∈ IRN1 x 1 in which the N1 malware and benign-
ware samples would form clusters. In Figure 3, we provide an example latent
factor A(1)

:r obtained by factorizing N1 = 10, 000 malware and benign-ware from
the EMBER-2018 dataset using CP-ALS. Here, we can see that CP-ALS was
able to cleanly separate malware and benign-ware instances within the latent
factor. We also provide a second example with more noisy clusters in Figure 4.
In Figure 4, around 7 lines forming clusters can be seen. Although the lines that
have the majority of the samples from the malware class form cleaner clusters,
there are other clusters where benign and malware samples are included within
the same cluster. In Section 4.3, we will describe how we handle the more noisy
clusters, or the clusters with poor uniformity where the majority of the cluster
is not represented by a single class, using the Cluster Uniformity Score.

In addition to observing clusters that separate malware and benign-ware
within each latent factor A(1)

:r , we also find that malware and benign instances

cluster among components in A(1), such that a single component r represents
samples from a single class. For instance, in Figure 5 we again show a latent
factor obtained by factorizing N1 = 10, 000 malware and benign-ware from the
EMBER-2018 dataset using CP-ALS. This time, it can be seen that CP-ALS
was able to cluster benign instances within a single factor from the component r.

Classifying Malware using Tensor Decomposition 15

Sample
0.01

0.00

0.01

0.02

0.03

Benign Malware

Fig. 5. Tensor decomposition placing benign samples into a single latent factor

Sample
0.006208

0.006210

0.006212

0.006214

0.006216

0.006218

Benign Malware

Fig. 6. Tensor decomposition placing malware specimens into a single latent factor

Similarly, in Figure 6, it can be seen that the latent factor r only contains mal-
ware specimens. Motivated by the fact that we can acquire meaningful patterns
that distinguish malware and benign-ware using tensor decomposition, we next
look at how these patterns can be captured to enable building a semi-supervised
classifier.

Capturing the Latent Patterns via Clustering: The performance of RFoT
depends on the success in capturing the patterns found by tensor decomposi-
tion into clusters. Therefore, in this section we compare two different clustering
methods. The first clustering algorithm we use to capture the patterns is called
Mean Shift (MS) [Fukunaga and Hostetler(1975),Wu and Yang(2007), Jin and
Han(2017)]. Specifically, we use the Scikit-learn implementation of this algo-
rithm [Pedregosa et al.(2011)]. MS uses centroids to be the mean of clusters
and updates the location of the clusters in a hill-climbing fashion to locate the
maxima of a given density function, making it a good fit to perform clustering in
a 1-dimensional space [Pedregosa et al.(2011)]. The window length, or the fur-
thest point from the centroid of a cluster, is selected via the bandwidth. We use
Scikit-learn’s estimate bandwith9 API to automatically determine the number of
clusters. RFoT applies MS to each component within the latent factor for the first
dimension A(1)

:r from a given tensor decomposition. We extract a total of Gr clus-

ters from each latent factor A(1)
:r , adding up to total of G = G0+G1+ · · ·+GR−1

9 We heuristically set the quantile hyper-parameter to be 0.1 for estimating the band-
width.

16 Eren et al.

clusters for a single tensor decomposition. We let the gj,r represent a cluster with
a set of samples from the rth component and jth cluster, where 0 ≤ j ≤ Gr − 1.

In addition to the MS clustering, we use Component clustering. The motiva-
tion behind the Component clustering comes from our observation that we can
obtain class-based groupings among components, rather than within individual
latent factor, obtained from tensor decomposition. We discussed this in Section
4.1, where figures 5 (component with only benign samples) and 6 (component
with only malware specimens) showed an example of clean clustering within a
single latent factor from the component r. Formally, when using the Component
clustering, we will let each A(1)

:r to define a single cluster such that gr,r = A(1)
:r .

The total number of clusters from the component r in this case is Gr = 1, and
the total number of clusters for the decomposition is G = R, where R is the
tensor rank. Recall that figures 3 and 4 showed example latent factors where we
had mix of both malware and benign-ware clusters. We will also use the Cluster
Uniformity Score, introduced below at Section 4.3, to filter out the cases where
we have more than one class describing a single latent factor.

After each tensor decomposition, we apply pre-processing to each latent fac-
tor A(1)

:r to keep the samples with signals, or samples with a value that is not
near 0 within the latent factor. To this end, prior to applying MS or Component
clustering, we mask out (or remove) the points that are close to zero, where the
distance to 0 is controlled with the hyper-parameter zero tol in RFoT. In our
experiments, we set zero tol = 1e− 08.

4.2 Ensemble of Random Tensor Configurations

Notation for an Ensemble of Tensors: Patterns extracted with tensor de-
composition depends on the configuration of the tensor including the selection
of the dimensions, tensor entry, and tensor rank. RFoT uses the ”wisdom of
crowds” philosophy by utilizing the patterns found from an ensemble of tensor
configurations with randomly selected dimensions, entries, and ranks. We use
the variable n estimators to represent the number of randomly generated ten-
sor configurations. Let XXX(i) be one of the randomly generated tensors where i
is in range 1 ≤ i ≤ n estimators. To describe the random tensor configuration
members of an ensemble, we re-formulate the notations introduced for tensor
decomposition in Section 3. We begin with re-writing the CPD formula with
sum of rank-1 tensors:

XXX(i) ≈
Ri∑
r=1

λr · a(i,1)r ◦ a(i,2)r ◦ · · · ◦ a(i,Di)
r (8)

Here we have the rank Ri CPD for the ith random tensor XXX(i) with Di

dimensions, and each a
(i,d)
r represents the rth latent factor for dimension d,

where r is in range 1 ≤ r ≤ Ri and d is in range of 1 ≤ d ≤ Di. Following the
KRUSKAL format we re-write the low-rank approximation as follows:

XXX(i) ≈MMM(i) ≡ Jλ ; A(i,1),A(i,2), · · · ,A(i,Di)K (9)

Classifying Malware using Tensor Decomposition 17

HereMMM(i) is the low-rank estimation for the ith random tensor, andMMM
(i)
::d−1 =

A(i,d) is the latent factors matrix for dimension d. Each A(i,d) ∈ IRNd xRi is a
collection of latent factors as follows:

A(i,d) = [a
(i,d)
1 ,a

(i,d)
2 , . . . ,a

(i,d)
Ri

] (10)

As explained in Section 4.1, to capture the sample groupings, RFoT fixes
the first dimension to represent each sample from our dataset. In an ensemble

of random tensor configurations setting, MMM
(i)
::0 = A(i,1) ∈ IRN1 xRi is the latent

factors matrix for the first dimension representing the N1 malware and benign
instances for the ith random tensor. MS clustering is applied to each A(i,1)

:r =

a
(i,1)
r , to capture G

(i)
r number of clusters from component r, such that the total

number of clusters found from ith tensor is G(i) = G
(i)
0 + G

(i)
1 + · · · + G

(i)
Ri−1.

In an ensemble notation, we will let each cluster with a set of samples to be

denoted with g
(i)
j,r, where 0 ≤ j ≤ G

(i)
r , for the rth component of ith tensor

decomposition. With Component clustering, each cluster is g
(i)
r,r = A(i,1)

:r , and
the total number of clusters G(i) = Ri for the ith tensor decomposed to rank
Ri.

Random Tensor Configuration Sampling: Our random tensor sampling
includes a random selection of the number of dimensions, the features to rep-
resent each dimension, tensor entry, and random or fixed tensor rank. For each
i random tensor, we first randomly choose the number of dimensions Di with
replacement, such that the range of Di is 3 ≤ Di ≤ β − 1, where β is the total
number of features from the original matrix X ∈ IRN1 x β . The minimum and
maximum number of dimensions a random tensor configuration can have is con-
trolled using the RFoT hyper-parameters (min dims, max dims), where dims is
short for dimensions. Here min dims >= 3 since tensors have at least 3 dimen-
sions, and max dims <= β since we need one of the features to be the tensor
entry. The first dimension is size N1 representing each malware and benign-ware
sample, and the features representing the remaining Di − 1 dimensions are ran-
domly selected from β features without replacement. Next, from the remaining
β−Di features, which represent the feature(s) that are not selected to be a ten-
sor dimension, RFoT randomly selects the feature to be used as the tensor entry
with replacement. Finally, rank Ri is selected randomly, also with replacement,
or each random tensor is assigned a user-defined fixed rank Ri = rank .

Tensor rank determines the number of hidden features, or latent components,
that the tensor decomposition should extract. If we choose the rank to be too low,
then we may miss vital information (under-fitting), while if the rank is chosen
to be too high, then we might include noise in our solution (over-fitting) [Van-
gara et al.(2020)]. If we under-fit or over-fit the solution, then the latent factors
might not have meaningful patterns to cluster benign and malware instances. By
randomly selecting the rank, we attempt to avoid the need to correctly deter-
mine the rank of the tensor. Using the philosophy ”wisdom of crowds”, we hope
that an ensemble of tensor decomposition collectively can reach a consensus in

18 Eren et al.

the extracted patterns and allow precise malware detection. By doing so, we let
the ensemble members, random tensors, complement each others’ weaknesses.
Specifically, we want to cancel out the impact of the cases where we obtain poor
tensor decomposition results by deriving a decision based on the majority of the
population. This hypothesis assumes that the cases with impure clusters do not
represent the majority of the population.

As we sample each random tensor configuration, we do not check if the same
configuration was already used. This check is avoided to ensure that the ran-
dom sampling process remains fast as the size of the ensemble grows. There-
fore, the aforementioned four steps for sampling random tensor configurations
for building the ensemble of n estimators tensors can result in repeated tensor
configurations, which would need to be discarded after the sampling. Inspired
from the previously introduced technique for fast sampling of zero tensor in-
dices [Hong et al.(2020)], we over-sample the tensor configurations to lower the
probability of the repeated tensor configurations. Therefore, we set the ensemble
size to be n estimators + (n estimators · 0.1) random tensors. We then perform
post-processing to keep the unique tensor configurations and under-sample the
ensemble to be the size of at most n estimators.

Feature
Vector 5 19 42 20 21 3 11 5 18 21 13 2 43

2.9-10.8 10.8-18.6 18.6-26.4 26.4-34.2 34.2-42Bins Ranges

0 1 2 3 4
5 Bin Indices

Making the Tensor Dimension

Fig. 7. Example of 4 numerical feature values being mapped to 5 bins to form a tensor
dimension.

Feature to Tensor Dimension Mapping and Tensor Entry: Categorical
features can easily be mapped to an index in the tensor dimension. For example,
take the EMBER-2018 feature has signature, a binary feature that can be a 0 or
1. If a tensor dimension represents this feature, the size of that dimension would
be 2, where has signature = 0 would map to index 0, and has signature = 1
would map to index 1. This generalizes to any categorical feature where the
labels can be encoded to retrieve features to dimension index mapping.

On the other hand, in order to use a numerical feature as a tensor dimension
we need to utilize binning to map the given numerical value to a certain index

Classifying Malware using Tensor Decomposition 19

in the dimension. RFoT uses the cut API from the Pandas Python library to
bin numerical values [pandas development team(2020),Wes McKinney(2010)].
The number of bins, or dimension size Nd, is determined by the RFoT hyper-
parameter bin scale, where the number of bins is Nd = bin scale ·num unique(f).
Here num unique(f) gives the total number of unique elements present in a given
feature vector f , which is one of β features. We provide an example in Figure
7 which shows how numerical features are mapped to 5 bins to from a tensor
dimension.

We can utilize a real example to further explain how a tensor for malware data
can be built using numerical feature binning and categorical feature mapping.
For example, let ith random tensor XXX(i) have the dimensions Sample - Number
of Strings - Has Signature, and entry Number of Sections. Sample dimension
represents each N1 malware and benign-ware sample. The dimension Number of
Strings represents the number of printable strings present in a given malware
or benign instance, with size N2 = bin scale · num unique(f), such that the
EMBER-2018 features for the number of strings will map to an index between
0 and N2 − 1. The categorical dimension Has Signature identifies if a given
specimen has a signature or not, thus the size of the last dimension is N3 = 2.
Finally, the tensor entry Number of Sections determines the number of sections

present in the PE header of a given file. An entry XXX
(i)
n,s,f in this tensor represents

the number sections that a specimen n ∈ [0, 1, · · · , N1 − 1], with number of
strings that bins to an index s ∈ [0, 1, · · · , N2 − 1], and with the signature flag
f ∈ [0, 1] has.

4.3 Semi-supervised Classification with RFoT

Tensor decomposition extracts latent patterns from multi-dimensional data
in an unsupervised fashion, and we capture these patterns for malware and
benign samples using clustering techniques as described in Section 4.1. Using
the captured clusters, we formulate a semi-supervised classifier that utilizes the
information found by tensor decomposition. In this section, we first describe
how the semi-supervised voting over the clusters is performed. This include the
cases where the model is unable to make a decision for a given sample, and thus
abstaining vote is given. We then introduce the Cluster Uniformity Score that
is used as a threshold to filter out noisy, or non-uniform clusters.

RFoT takes a dataset X ∈ IRn x β , where n is the number of samples and
β is the number of features, and a vector y that represents the labels for each
n samples such that yn ∈ [−1, 0, 1, · · · , C − 1]. Note that −1 is used for the
unknown specimens, and C is the number of classes. In this chapter, we have
C = 2 for malware and benign-ware, such that yn ∈ [−1, 0, 1] where 0 labels the
benign-ware and 1 labels the malware. When we obtain a cluster, we use the
known samples (samples with labels) as a reference to help us make a decision
against the unknown samples (samples without labels, or −1) within that cluster.
Specifically, the class vote of the given unknown samples that are in the cluster

g
(i)
j,r is determined by the majority class of the known samples that are in the

20 Eren et al.

Case 1
Vote Benign-ware

Case 2
No Unknown Samples

Case 3
Vote Malware

Case 4
No Unknown Samples

Case 5
No Known Samples

Case 6
Poor Cluster Purity

?

?

?

?

?

?

?

?

?

? ?

??

?

?

?
?

?

?

? ?

Case 7
No Unknown Samples

Fig. 8. Possible cases of clusters that can be seen

same cluster g
(i)
j,r. There are 7 possible cases of cluster characteristics that we can

obtain from the latent components, which are shown in Figure 8. In Case 1, we
may have a cluster containing a set of unknown specimens and a set of known
benign-ware. In this case, we would vote the unknown specimens as benign files.
Similarly, we can vote the unknown specimens as malware if the majority of the
known specimens are malware in the same cluster, as shown in Case 3. It is
also possible to come across clusters where no unknown specimens are present,
as shown in Case 2, Case 4, and Case 7. If there are no unknown samples in
a given cluster, we disregard the cluster since we do not need to perform any
voting.

This semi-supervised setup for classifying unknown specimens via clustering
allows us to perform abstaining predictions (i.e. predict ”I do not know”) due
to not being able to obtain a class vote for a given sample. For instance, if a
cluster consists of only a set of unknown specimens, as shown in Case 5, we
cannot take a vote for these samples since we do not have any labeled instances
to inform us regarding the class vote. We also cannot take a vote for the samples
that are masked out due to the lack of signals (samples that are close to 0 with
a certain threshold), as described in Section 4.1, since these instances would not
be used in clustering. If a given sample always falls in a cluster without any
known samples, as in Case 5, for each random tensor XXX(i) and its latent factor
for the first dimension A(i,1) obtained by the decomposition, then this sample is
predicted to be abstaining, or its label is kept as unknown (−1). Similarly, if a

given sample n is consistently masked out due to being near zero in each A(i,1),
then it is predicted to be abstaining.

Classifying Malware using Tensor Decomposition 21

For the samples that do get class vote(s), we perform max-vote to determine
the final class prediction. That is, if a given specimen n has its majority of the
votes (over 50%) representing one of the C classes, the instance n is predicted
to be that class.

Cluster Uniformity Score: It is possible to encounter a cluster that is not
uniform in representing a single class (cluster have known instances from multiple
classes). We have already shown an example of a latent factor with non-uniform
clusters in Figure 4, where noisy clusters occur. In Figure 8,Case 6 demonstrates
a cluster where we have a mix of known malware and benign-ware specimens.
In such cases, we cannot obtain an accurate class vote from the cluster. To filter
out these clusters, we use the Cluster Uniformity Score which is calculated based

on the fraction of the most dominant known class in the given cluster g
(i)
j,r. We

have previously used cluster uniformity score in our prior work for determining
the uniformity of the clusters based on known specimens [Eren et al.(2023)]. In
this chapter, we utilize the same metric, but re-formulate it to match with our
ensemble of tensors notation as follows:

Ug
(i)
j,r =

|max (g
(i)
j,r

known
)|

|g(i)
j,r

known
|

(11)

Here Ug
(i)
j,r is the cluster uniformity score for jth cluster obtained from rth

component of tensor decomposition of ith tensor, g
(i)
j,r. |max(g

(i)
j,r

known
)| is the

number of samples that belongs to the most dominant class with known samples

in the cluster g
(i)
j,r, while |g

(i)
j,r

known
| is the total number of known samples in the

cluster. The clusters where Ug
(i)
j,r is below the specified uniformity threshold t

are removed from consideration, and thus no class vote is obtained from these
clusters. If a given specimen n continuously falls in the clusters that are removed
due to poor purity, it is also predicted to be abstaining at the end.

4.4 Putting it Together: the RFoT Algorithm

We summarize the RFoT methodology in Figure 9, and with pseudo-code in
Algorithm 1. We first randomly sample tensor configurations (1). Then each ten-
sor configuration is factorized to obtain the latent components (2). Within each
latent component, we look at the latent factor representing each malware and
benign-ware sample (2). Clustering is applied to capture the groupings within
each of these latent factors (2). We filter out the noisy clusters using the cluster
uniformity score. In the cases where we were able to acquire clean clusters, we
take a class vote in a semi-supervised fashion (2). After each tensor is factorized,
and class votes are obtained from each latent factor for the first dimension, we
get the final class prediction via max-vote (3). The specimens are predicted to

22 Eren et al.

Votes

Max Vote
Class Label

Features
Sa

m
pl

es

Ensemble of Random Tensor Configurations

Entry:

Entry:

Cluster 1

Cluster 2

Known
Malware

Known
Benign-ware

Unknown
Sample

Vote Benign

Vote MalwareFor Each
Latent Factor

Entry:

Fo
r E

ac
h

R
an

do
m

 T
en

so
r

Factorize Each Random Tensor, Apply Clustering in Each Component, and Perform Semi-supervised Voting

? ?

??

1

2

3
A

fter Each R
andom

Tensor is Processed

Final Class Prediction

Fig. 9. RFoT methodology overview

be abstaining if they did not get any class vote due to either being part of clus-
ters that were not uniform, not falling in a cluster that had known samples, or
because they were masked out due to not having a signal.

We finally note that our implementation of RFoT computes the decomposi-
tion of the ensemble of random tensor configurations in a parallel fashion, since
they are independent of one another. The parallel computation of the members
of ensemble allows us to reduce the total time needed for prediction. Specifically,
in Algorithm 1, lines 3 through 15 are executed in parallel based on the number
of jobs that the user wants to run.

Now that we have introduced our methodology, we will next showcase the
experiment results from a case-study where we classified malware and benign
samples from the EMBER-2018 dataset using RFoT.

5 Experiments

In this section, we begin by introducing the dataset and the features utilized
in our experiments. Following that, we provide a summary of the performance

Classifying Malware using Tensor Decomposition 23

Algorithm 1 RFoT(X, y, n estimators, bin scale, t, R, min dims, max dims)

1: tensor configs = sample tensors(X, n estimators, R, min dims, max dims)

2: class votes = []

3: for config in tensor configs do ▷ Start the parallel execution

4: XXX(i) = build tensor(bin features(X, config), config) ▷ COO format

5: MMM(i) = decompose(XXX(i), Ri) ▷ CP-ALS or CP-APR

6: A(i,1) = get signals(MMM
(i)
::0) ▷ Mask out near zero elements for the mode-1

7: clusters = cluster latent factor(A(i,1)
:r) ▷ For each Ri, MS or Component

8: for g
(i)
j,r in clusters do

9: if g
(i)
j,r in [Case 4,5,6 or 7] then ▷ See Figure 8 for the cases

10: continue ▷ Abstaining votes

11: else

12: class votes.append(vote(g
(i)
j,r, y)) ▷ Semi-supervised voting

13: end if

14: end for

15: end for ▷ End the parallel execution

ypred = max vote(class votes, y) ▷ Final class prediction

16: return ypred

evaluation metrics applied in our studies. Subsequently, we compare our results
to the baseline models and assess the performance of RFoT alongside the baseline
models as the labeled data percentage decreases.

5.1 EMBER-2018 Dataset and Experiment Setup

The availability of publicly accessible malware datasets for benchmarking ML
methods has historically been limited. This constraint stems from challenges re-
lated to acquiring labeled malware data, encompassing issues such as copyright
concerns for benign data and the time-consuming, expensive nature of labeling
malware data [Raff and Nicholas(2020)]. To mitigate this problem, Anderson et
al. introduced the EMBER-2018 dataset [Anderson and Roth(2018)]. Since its
release, EMBER-2018 has emerged as a popular dataset employed by researchers
to assess the efficacy of their ML-based techniques in the malware domain. Con-
sequently, we utilize the EMBER-2018 dataset in our study to evaluate the
capabilities of our introduced algorithm, RFoT.

EMBER-2018 consist of PE header and file meta-data features drawn from
1.1 million Windows malware and benign-ware, out of which 800,000 of them
has labels. In this study we use 9 PE header features to construct our tensors,
and train the baseline models. Specifically, following features are used:

1. Number of Strings: the number of printable strings in the file
2. Strings Entropy: randomness measurement for the printable strings
3. File Size: size of the executable in bytes

24 Eren et al.

4. Number of Exports: number of functions being exported by the binary

5. Number of Imports: number of functions being imported by the binary

6. Size of Code: the size of the code section (.txt) in PE header

7. Number of Sections: the total number of sections in the PE header

8. Has Debug: flag to indicate if the debug value is on/off

9. Has Signature: flag to indicate if the file has a signature

To conduct our experiments, we build 10 smaller subsets out of all the 800,000
instances in EMBER-2018, where each subset contains 10,000 balanced amounts
of malware and benign-ware. We apply our experiments to every 10 subset data
to show that the reported results are statistically significant. Our final results are
reported with a 95% Confidence Interval (CI). In Section 5.3, where the several
evaluation metrics used to report the performance of our method as compared
to the baseline models, we make the test set size to be 30% of 10,000 malware
and benign instances for each 10 subsets. For RFoT, 30% test size gives us the
number of samples without labels (unknown set).

5.2 Performance Evaluation Metrics

Precision, Recall, and F1 Measure: To evaluate the performance of our
method and the baseline models, we use Precision, Recall, and F1 score. Precision
score measures the ability of the model’s correctly identify the positive class and
can be calculated as follows:

Precision =
TP

TP + FP
(12)

where TP is the number of true positive predictions, FP is the false positives.
The Recall metric measures the extent to which model can detect the positive
class, malware in our case, and it is calculated as follows:

Recall =
TP

TP + FN
(13)

where FN is the number of false negatives. F1 score is calculated using both
the Precision and Recall scores together; therefore, F1 score is only high when
both Precision and Recall are high. F1 score can be calculated as follows:

F1 = 2 · Precision · Recall
Precision + Recall

(14)

More specifically, F1 can be calculated as follows:

F1 =
TP

TP +
1

2
(FP + FN)

(15)

Classifying Malware using Tensor Decomposition 25

Execution Time and Abstaining Predictions: The other two metrics used
in our results are the execution time for both RFoT and baseline models, and
the percent of abstaining predictions for RFoT. The execution time for the base-
line models XGBoost, LightGBM, and XGBoost+SelfTrain (the semi-supervised
extension of XGBoost) include the time it took to train the models and make
predictions. Finally, the percentage of the abstaining predictions gives tells us
the percent of unknown samples that remained unknown (or with label −1) after
the prediction.

5.3 RFoT Performance and Baseline Comparisons

Table 2. Baseline comparisons

Model Method F1 Precision Recall Abstaining (%) Time (sec)

RFoT (Component, CP-ALS) Semi-supervised 0.968 (+-0.005) 0.968 (+-0.005) 0.968 (+-0.006) 75.703 (+- 0.863) 536.151 (+- 5.132)
RFoT (MS, CP-ALS) Semi-supervised 0.913 (+-0.005) 0.915 (+-0.004) 0.913 (+-0.005) 58.158 (+- 0.399) 554.831 (+- 5.263)
RFoT (Component, CP-APR) Semi-supervised 0.940 (+-0.016) 0.941 (+-0.016) 0.940 (+-0.016) 93.220 (+- 1.534) 880.700 (+- 21.192)
RFoT (MS, CP-APR) Semi-supervised 0.793 (+-0.008) 0.805 (+-0.007) 0.797 (+-0.008) 54.218 (+- 1.646) 1582.156 (+- 20.056)
LightGBM Supervised 0.871 (+-0.005) 0.871 (+-0.005) 0.871 (+-0.005) NA 78.595 (+- 6.040)
XGBoost Supervised 0.873 (+-0.005) 0.874 (+-0.005) 0.873 (+-0.006) NA 93.805 (+- 2.752)
XGBoost+SelfTrain Semi-supervised 0.872 (+-0.006) 0.873 (+-0.006) 0.873 (+-0.006) NA 87.410 (+- 6.813)

We compare RFoT with CP-ALS and CP-APR decomposition, using MS
and Component clustering, against baseline models XGBoost, LightGBM, and
XGBoost+SelfTrain. For CP-APR we use 16 parallel jobs to decompose each
random tensor using GPUs, while for CP-ALS is decomposed with 50 parallel
jobs on CPUs. We tune the baseline models using a popular Python package
Optuna [Akiba et al.(2019)]. XGBoost and LightGBM tuned with 3-fold strati-
fied cross-validation and 50 trials to identify the optimal hyper-parameters. The
tuning settings, or search space for the optimal hyper-parameters, listed below
are the same from our prior work on semi-supervised malware family classifica-
tion [Eren et al.(2021)].

For LightGBM, we used 250 maximum number of iterations, gbdt boosting
type, and objective function binary logloss. The following hyper-parameters were
tuned (ranges are shown in parenthesis): min data in leaf (5-100 in log scale),
max depth (2-7), bagging freq (0-5), bagging fraction (.5-1.0), learning rate (.001-
.1 in log scale), and feature fraction (.1-.7).

As for XGBoost, we set the maximum boosting rounds to 250 and use the
binary-hinge objective function. The following hyper-parameters were tuned,
with ranges again shown in parentheses: max depth (2-10), eta (.003-0.5 in
log scale), subsample (.2-.7), rounds (10-300), colsample bytree (.3-1.0), colsam-
ple bylevel (.5-1.0), and lambda (.1-2.0). We use the same tuned hyper-parameters
for XGBoost for the XGBoost+SelfTrain baseline model.

In Table 2, we compare RFoT with baseline models based on F1 score, Pre-
cision, Recall, and computation time in seconds. Additionally, we display the
percentage of abstaining predictions for RFoT. From the table, it’s evident that

26 Eren et al.

each RFoT model outperforms every other baseline model. The RFoT model
employing Component clustering and CP-ALS tensor decomposition achieves
the highest F1 score of 0.968. However, this model also generates a significantly
high abstaining prediction rate of 75.70%. Thus, an ideal model choice emerges
with RFoT utilizing MS clustering and CP-ALS tensor decomposition, boasting
a commendable F1 score of 0.91 and a lower abstaining prediction rate of 58%.

CP-APR with component clustering also demonstrates high performance
with an F1 score of 0.94. However, it registers the highest abstaining predic-
tion rate at 93.22%. In contrast, RFoT with CP-APR decomposition and MS
clustering yields the lowest F1 score of 0.79. Among the models compared, the
fastest performer is LightGBM clocking in at 78.59 seconds.

These results underscore that RFoT is an ideal model for precise malware
detection, although it might predict a lower number of samples due to abstaining
predictions. Notably, as a semi-supervised solution, RFoT surpasses supervised
models, potentially offering better generalizability to novel malware.

0.0
2

0.0
6 0.1 0.1

4
0.1

8
0.2

2
0.2

6 0.3 0.3
4

0.3
8

0.4
2

0.4
6 0.5 0.5

4
0.5

8
0.6

2
0.6

6 0.7 0.7
4

0.7
8

0.8
2

0.8
6 0.9 0.9

4
0.9

8

Unknown Fraction

0

20

40

60

80

100

A
bs

ta
in

in
g

Sa
m

pl
es

 (%
)

Model
RFoT (MS, CP-ALS)
RFoT (Component, CP-ALS)

RFoT (MS, CP-APR)
RFoT (Component, CP-APR)

Fig. 10. Abstaining percentage is shown for different values of the unknown fraction.

Labeled Malware Data Scarcity Experiment: Compared to other ML
fields, obtaining labeled malware data is time-consuming and expensive [Raff
and Nicholas(2020)]. This issue is particularly problematic because popular su-
pervised ML solutions for malware detection often require a large quantity of
labeled data to achieve good performance. Additionally, Raff et al. emphasize
that semi-supervised solutions in the realm of Windows malware classification
have not received sufficient attention, despite their potential benefits such as
improved generalizability to novel malware and achieving higher performance
even with a limited quantity of labeled data [Raff and Nicholas(2020)].

Therefore, we conducted tests on the performance of our semi-supervised
solution with a decreasing quantity of labeled data. We then compared its per-
formance with that of the supervised and semi-supervised baseline models.

Classifying Malware using Tensor Decomposition 27

0.0
2

0.0
6 0.1 0.1

4
0.1

8
0.2

2
0.2

6 0.3 0.3
4

0.3
8

0.4
2

0.4
6 0.5 0.5

4
0.5

8
0.6

2
0.6

6 0.7 0.7
4

0.7
8

0.8
2

0.8
6 0.9 0.9

4
0.9

8

Unknown Fraction

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F1
 S

co
re

Model
RFoT (MS, CP-ALS)
RFoT (Component, CP-ALS)

RFoT (MS, CP-APR)
RFoT (Component, CP-APR)

LightGBM
XGBoost+SelfTrain

XGBoost

Fig. 11. F1 score is shown for different values of the unknown fraction.

We range the fraction of unknown specimens between 0.02 and 0.98 with the
step size of 0.02. The fraction of unknown samples θ means that the proportion
of the known samples would be 1 − θ. For the supervised baseline models, the
fraction of the unknown samples θ is equivalent to the size of the test set, while
the fraction of the known samples determines the training set size. The baseline
models are also tuned in this experiment as described in Section 5.3.

In Figure 10, the percentage of abstaining predictions for RFoT with CP-
ALS and CP-APR, along with MS and Component clustering, is illustrated.
CP-APR with Component clustering exhibits the highest number of abstaining
predictions, while CP-APR with MS clustering shows the lowest. Meanwhile,
Figure 11 indicates that CP-APR with MS clustering demonstrates the low-
est performance. This suggests that CP-APR struggles to identify meaningful
patterns that differentiate the classes within each latent factor. However, CP-
APR with Component clustering achieves high-performance results, albeit with
a trade-off of a high number of abstaining predictions.

CP-ALS with MS and Component clustering presents a lower percentage of
abstaining predictions along with higher F1 scores. As the fraction of unknown
specimens increases, the percentage of abstaining predictions initially remains
stable and then rapidly decreases, particularly after an unknown fraction of
approximately 0.7, as depicted in Figure 10. This decline could be attributed to
the cluster uniformity score’s inability to filter out noisy clusters, as they are
now represented by unknown specimens from the same class. Consequently, the
other known specimens, which initially revealed the poor uniformity, are lost as
the unknown fraction increases.

In Figure 10, it’s noticeable that our baseline models generally demonstrate
similar performance trends as the fraction of unknown specimens increases. How-
ever, there’s a significant performance drop observed for XGBoost+SleftTrain
after an unknown fraction of 0.74.

28 Eren et al.

RFoT with CP-ALS and MS clustering, along with CP-APR with Component
clustering, outperforms each baseline model until XGBoost and LightGBM start
to surpass RFoT with CP-ALS and MS clustering after the unknown fraction
reaches 0.86. Similarly, XGBoost and LightGBM outperform RFoT with CP-
APR and Component clustering after an unknown fraction of 0.94.

Considering that abstaining predictions contribute to maintaining model per-
formance, it’s noteworthy that RFoT based on CP-ALS with Component clus-
tering consistently outperforms each of the baseline models, irrespective of the
fraction of unknown specimens.

We demonstrated the performance of RFoT and compared it to the tuned
baseline models that prior studies have used to report state-of-the-art malware
detection results. Our findings unveiled that RFoT, as a semi-supervised solu-
tion, exhibits superior capabilities in detecting malware compared to the base-
line models, including the supervised algorithms. Furthermore, our experiments
highlighted that RFoT can achieve higher accuracy in detecting malware even
as the percentage of known samples decreases.

6 Conclusions

We introduced RFoT, a semi-supervised method that employs tensor de-
composition to classify malware and benign ware. Tensor decomposition reveals
significant latent patterns that clustering methods can capture, effectively dis-
tinguishing between malware and benign-ware. This approach allows us to utilize
known samples as a reference point for voting on class labels of unknown speci-
mens.

As the information extracted via tensor decomposition relies on the tensor’s
configuration, we devised a model that generates an ensemble of random config-
urations. Using a max-vote system based on the majority decisions within the
ensemble population, we make the final class predictions.

Our experiments demonstrated that our semi-supervised method delivers
more precise classification results compared to baseline supervised and semi-
supervised ML models. However, this comes with the trade-off of predicting a
lower number of samples due to abstaining predictions. Additionally, we have
made our code publicly available to support the utility of tensor decomposition
in malware analysis and to ensure the reproducibility of our results.

7 Acknowledgement

This manuscript has been assigned LA-UR-24-20205.

References

Abdelmonem et al.(2021). Salma Abdelmonem, Shahd Seddik, Rania El-Sayed, and
Ahmed S. Kaseb. 2021. Enhancing Image-Based Malware Classification Using

Classifying Malware using Tensor Decomposition 29

Semi-Supervised Learning. In 2021 3rd Novel Intelligent and Leading Emerging
Sciences Conference (NILES). Institute of Electrical and Electronics Engineers,
125–128. https://doi.org/10.1109/NILES53778.2021.9600511

Ahmadi et al.(2016). Mansour Ahmadi, Dmitry Ulyanov, Stanislav Semenov, Mikhail
Trofimov, and Giorgio Giacinto. 2016. Novel feature extraction, selection and
fusion for effective malware family classification. In Proceedings of the sixth ACM
conference on data and application security and privacy. ACM, 183–194.

Akiba et al.(2019). Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and
Masanori Koyama. 2019. Optuna: A next-generation hyperparameter optimization
framework. In Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining. ACM, 2623–2631.

Anderson and Roth(2018). H. S. Anderson and P. Roth. 2018. EMBER: An Open
Dataset for Training Static PE Malware Machine Learning Models. ArXiv e-prints
(April 2018), 8. arXiv:1804.04637 [cs.CR]

Atluri(2019). Venkata Atluri. 2019. Malware Classification of Portable Executables
using Tree-Based Ensemble Machine Learning. In 2019 SoutheastCon. IEEE, IEEE,
1–6.

Azeez et al.(2021). Nureni Ayofe Azeez, Oluwanifise Ebunoluwa Odufuwa, Sanjay
Misra, Jonathan Oluranti, and Robertas Damaševičius. 2021. Windows PE mal-
ware detection using ensemble learning. In Informatics. Multidisciplinary Digital
Publishing Institute, Multidisciplinary Digital Publishing Institute, 10.

Bader and Kolda(2006). Brett W. Bader and Tamara G. Kolda. 2006. Algorithm 862:
MATLAB Tensor Classes for Fast Algorithm Prototyping. ACM Trans. Math.
Software 32, 4 (December 2006), 635–653. https://doi.org/10.1145/1186785.

1186794

Bader et al.(2017). Brett W. Bader, Tamara G. Kolda, et al. 2017. MATLAB Ten-
sor Toolbox Version 3.0-dev. Available online. https://gitlab.com/tensors/

tensor%5Ftoolbox

Bak et al.(2020). Márton Bak, Dorottya Papp, Csongor Tamás, and Levente Buttyán.
2020. Clustering IoT Malware based on Binary Similarity. In NOMS 2020-2020
IEEE/IFIP Network Operations and Management Symposium. IEEE, IEEE, 1–6.

Battaglino et al.(2018). Casey Battaglino, G. Ballard, and T. Kolda. 2018. A Practical
Randomized CP Tensor Decomposition. SIAM J. Matrix Anal. Appl. 39 (2018),
876–901.

Bissell et al.(2020). K Bissell, R LaSalle, and P.D. Cin. 2020. Innovate for Cyber
Resilience. Technical Report. Accenture, Ponemon Institute.

Bissell and Ponemon(2019). K. Bissell and L. Ponemon. 2019. The Cost of Cybercrime.
Technical Report. Accenture, Ponemon Institute. https://www.accenture.com/

%5Facnmedia/PDF-96/Accenture-2019-Cost-of-Cybercrime-Study-Final.pdf

Bruns-Smith et al.(2016). David Bruns-Smith, Muthu Manikandan Baskaran,
James R. Ezick, Thomas Henretty, and Richard A. Lethin. 2016. Cyber Security
through Multidimensional Data Decompositions. 2016 Cybersecurity Symposium
(CYBERSEC) (2016), 59–67.

Buitinck et al.(2013). Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pe-
dregosa, Andreas Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexan-
dre Gramfort, Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud Joly,
Brian Holt, and Gaël Varoquaux. 2013. API design for machine learning software:
experiences from the scikit-learn project. In ECML PKDD Workshop: Languages
for Data Mining and Machine Learning. 108–122.

https://doi.org/10.1109/NILES53778.2021.9600511
https://doi.org/10.1145/1186785.1186794
https://doi.org/10.1145/1186785.1186794
https://gitlab.com/tensors/tensor%5Ftoolbox
https://gitlab.com/tensors/tensor%5Ftoolbox
https://www.accenture.com/%5Facnmedia/PDF-96/Accenture-2019-Cost-of-Cybercrime-Study-Final.pdf
https://www.accenture.com/%5Facnmedia/PDF-96/Accenture-2019-Cost-of-Cybercrime-Study-Final.pdf

30 Eren et al.

Chen and Guestrin(2016). Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scal-
able Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining (San Francisco,
California, USA) (KDD ’16). ACM, New York, NY, USA, 785–794. https:

//doi.org/10.1145/2939672.2939785
Chi and Kolda(2012). Eric C. Chi and Tamara G. Kolda. 2012. On Tensors, Sparsity,

and Nonnegative Factorizations. SIAM J. Matrix Anal. Appl. 33 (2012), 1272–
1299.

Dahl et al.(2013). George E. Dahl, Jack W. Stokes, Li Deng, and Dong Yu. 2013.
Large-scale malware classification using random projections and neural networks.
In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.
IEEE, 3422–3426. https://doi.org/10.1109/ICASSP.2013.6638293

Eren et al.(2021). M. E. Eren, M. Bhattarai, R. J. Joyce, E. Raff, C. Nicholas, and B.
Alexandrov. 2021. Semi-supervised Classification of Malware Families via Hier-
archical Non-negative Matrix Factorization with Automatic Model Determination.
Technical Report. Los Alamos National Lab.(LANL), Los Alamos, NM (United
States). LA-UR-21-29919.

Eren et al.(2023). Maksim E. Eren, Manish Bhattarai, Robert J. Joyce, Edward Raff,
Charles Nicholas, and Boian S. Alexandrov. 2023. Semi-Supervised Classification of
Malware Families Under Extreme Class Imbalance via Hierarchical Non-Negative
Matrix Factorization with Automatic Model Selection. ACM Trans. Priv. Secur.
(sep 2023). https://doi.org/10.1145/3624567 Just Accepted.

Eren et al.(2020). M. E. Eren, J. S. Moore, and B. S. Alexandrov. 2020. Multi-
Dimensional Anomalous Entity Detection via Poisson Tensor Factorization. In 2020
IEEE International Conference on Intelligence and Security Informatics (ISI).
IEEE, 1–6. https://doi.org/10.1109/ISI49825.2020.9280524

Eren et al.(2021). M. E. Eren, J. S. Moore, E. Skau, M. Bhattarai, G. Chennupati,
and B. S. Alexandrov. 2021. pyCP APR. https://github.com/lanl/pyCP_APR.
https://doi.org/10.5281/zenodo.4840598

Eren et al.(2022). M. E. Eren, J. S. Moore, E. W. Skau, E. A. Moore, M. Bhattarai,
G. Chennupati, and B. S. Alexandrov. 2022. General-Purpose Unsupervised Cy-
ber Anomaly Detection via Non-Negative Tensor Factorization. Digital Threats:
Research and Practice (2022), 28 pages. https://doi.org/10.1145/3519602

Ezick et al.(2019). James Ezick, Tom Henretty, Muthu Baskaran, Richard Lethin,
John Feo, Tai-Ching Tuan, Christopher Coley, Leslie Leonard, Rajeev Agrawal,
Ben Parsons, and William Glodek. 2019. Combining Tensor Decompositions and
Graph Analytics to Provide Cyber Situational Awareness at HPC Scale. In 2019
IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 1–7.
https://doi.org/10.1109/HPEC.2019.8916559

Fanaee-T et al.(2014). Hadi Fanaee-T, Márcia D. B. Oliveira, João Gama, Simon Ma-
linowski, and Ricardo Morla. 2014. Event and Anomaly Detection Using Tucker3
Decomposition. ArXiv abs/1406.3266 (2014).

Fonseca A et al.(2021). Fabian H. Fonseca A, Serena Ferracci, Federico Palmaro, Luca
Iocchi, Daniele Nardi, and Luisa Franchina. 2021. Static Analysis of PE files Using
Neural Network Techniques for a Pocket Tool. In 2021 International Conference
on Electrical, Computer, Communications and Mechatronics Engineering (ICEC-
CME). IEEE, 01–06. https://doi.org/10.1109/ICECCME52200.2021.9590958

Fukunaga and Hostetler(1975). K. Fukunaga and L. Hostetler. 1975. The estimation of
the gradient of a density function, with applications in pattern recognition. IEEE
Transactions on Information Theory 21, 1 (1975), 32–40. https://doi.org/10.

1109/TIT.1975.1055330

https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1109/ICASSP.2013.6638293
https://doi.org/10.1145/3624567
https://doi.org/10.1109/ISI49825.2020.9280524
https://github.com/lanl/pyCP_APR
https://doi.org/10.5281/zenodo.4840598
https://doi.org/10.1145/3519602
https://doi.org/10.1109/HPEC.2019.8916559
https://doi.org/10.1109/ICECCME52200.2021.9590958
https://doi.org/10.1109/TIT.1975.1055330
https://doi.org/10.1109/TIT.1975.1055330

Classifying Malware using Tensor Decomposition 31

Gupta and Rani(2020). Deepak Gupta and Rinkle Rani. 2020. Improving malware de-
tection using big data and ensemble learning. Computers & Electrical Engineering
86 (2020), 106729.

Hansen et al.(2015). Samantha Hansen, Todd Plantenga, and Tamara G. Kolda. 2015.
Newton-Based Optimization for Kullback-Leibler Nonnegative Tensor Factoriza-
tion. Optimization Methods and Software 30, 5 (April 2015), 1002–1029. https:

//doi.org/10.1080/10556788.2015.1009977

Hansen et al.(2016). Steven Strandlund Hansen, Thor Mark Tampus Larsen, Matija
Stevanovic, and Jens Myrup Pedersen. 2016. An approach for detection and fam-
ily classification of malware based on behavioral analysis. In 2016 International
Conference on Computing, Networking and Communications (ICNC). IEEE, 1–5.
https://doi.org/10.1109/ICCNC.2016.7440587

Harris et al.(2020). Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt,
Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor,
Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer,
Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del
Ŕıo, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard,
Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E.
Oliphant. 2020. Array programming with NumPy. Nature 585, 7825 (Sept. 2020),
357–362. https://doi.org/10.1038/s41586-020-2649-2

Hong et al.(2020). David Hong, Tamara G. Kolda, and Jed A. Duersch. 2020. Gener-
alized Canonical Polyadic Tensor Decomposition. ArXiv abs/1808.07452 (2020).

Hou et al.(2017). Jieqiong Hou, Minhui Xue, and Haifeng Qian. 2017. Unleash the
Power for Tensor: A Hybrid Malware Detection System Using Ensemble Classifiers.
In 2017 IEEE International Symposium on Parallel and Distributed Processing with
Applications and 2017 IEEE International Conference on Ubiquitous Computing
and Communications (ISPA/IUCC). IEEE, 1130–1137. https://doi.org/10.

1109/ISPA/IUCC.2017.00170

Huang and Stokes(2016). Wenyi Huang and Jay Stokes. 2016. MtNet: A
Multi-Task Neural Network for Dynamic Malware Classification. In Pro-
ceedings of 13th International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment (DIMVA 2016) (proceed-
ings of 13th international conference on detection of intrusions and
malware, and vulnerability assessment (dimva 2016) ed.). Springer,
399–418. https://www.microsoft.com/en-us/research/publication/

mtnet-multi-task-neural-network-dynamic-malware-classification/

IBM(2019). IBM. 2019. Cost of a Data Breach Report. , 23 pages.
Irofti and Băltoiu(2019). Paul Irofti and Andra Băltoiu. 2019. Malware Identification

with Dictionary Learning. In 2019 27th European Signal Processing Conference
(EUSIPCO). IEEE, 1–5. https://doi.org/10.23919/EUSIPCO.2019.8903043

Jiang et al.(2019). Jianguo Jiang, Song Li, Min Yu, Gang Li, Chao Liu, Kai Chen,
Hui Liu, and Weiqing Huang. 2019. Android malware family classification based
on sensitive opcode sequence. In 2019 IEEE Symposium on Computers and Com-
munications (ISCC). IEEE, IEEE, 1–7.

Jin and Han(2017). Xin Jin and Jiawei Han. 2017. Mean Shift. Springer US, Boston,
MA, 806–808. https://doi.org/10.1007/978-1-4899-7687-1_532

Kanehara et al.(2019). Hideaki Kanehara, Yuma Murakami, Jumpei Shimamura,
Takeshi Takahashi, Daisuke Inoue, and Noboru Murata. 2019. Real-Time Bot-
net Detection Using Nonnegative Tucker Decomposition. In Proceedings of the
34th ACM/SIGAPP Symposium on Applied Computing (Limassol, Cyprus) (SAC

https://doi.org/10.1080/10556788.2015.1009977
https://doi.org/10.1080/10556788.2015.1009977
https://doi.org/10.1109/ICCNC.2016.7440587
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/ISPA/IUCC.2017.00170
https://doi.org/10.1109/ISPA/IUCC.2017.00170
https://www.microsoft.com/en-us/research/publication/mtnet-multi-task-neural-network-dynamic-malware-classification/
https://www.microsoft.com/en-us/research/publication/mtnet-multi-task-neural-network-dynamic-malware-classification/
https://doi.org/10.23919/EUSIPCO.2019.8903043
https://doi.org/10.1007/978-1-4899-7687-1_532

32 Eren et al.

’19). Association for Computing Machinery, New York, NY, USA, 1337–1344.
https://doi.org/10.1145/3297280.3297415

Ke et al.(2017). Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Wei-
dong Ma, Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A Highly Efficient Gradi-
ent Boosting Decision Tree. In Proceedings of the 31st International Conference on
Neural Information Processing Systems (Long Beach, California, USA) (NIPS’17).
Curran Associates Inc., Red Hook, NY, USA, 3149–3157.

Kisil et al.(2018). Ilia Kisil, Ahmad Moniri, and Danilo P. Mandic. 2018. TENSOR
ENSEMBLE LEARNING FOR MULTIDIMENSIONAL DATA. In 2018 IEEE
Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 1358–
1362. https://doi.org/10.1109/GlobalSIP.2018.8646694

Kolda and Bader(2009). Tamara G. Kolda and Brett W. Bader. 2009. Tensor De-
compositions and Applications. SIAM Rev. 51, 3 (September 2009), 455–500.
https://doi.org/10.1137/07070111X

Kong and Yan(2013). Deguang Kong and Guanhua Yan. 2013. Discriminant Mal-
ware Distance Learning on Structural Information for Automated Malware Clas-
sification. In Proceedings of the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (Chicago, Illinois, USA) (KDD ’13). As-
sociation for Computing Machinery, New York, NY, USA, 1357–1365. https:

//doi.org/10.1145/2487575.2488219

Koutra et al.(2012). Danai Koutra, Evangelos E. Papalexakis, and Christos Faloutsos.
2012. TensorSplat: Spotting Latent Anomalies in Time. In 2012 16th Panhel-
lenic Conference on Informatics. IEEE, 144–149. https://doi.org/10.1109/

PCi.2012.60

Kumar and Geetha(2020). Rajesh Kumar and S Geetha. 2020. Malware classification
using XGboost-Gradient boosted decision tree. Advances in Science, Technology
and Engineering Systems Journal 5, 5 (2020).

Labs(2020). Malwarebytes Labs. 2020. State of Malware Report. Technical Report.
Malwarebytes Labs. 57 pages.

Ling et al.(2019). Yeong Tyng Ling, Nor Fazlida Mohd Sani, Mohd Taufik Abdullah,
and Nor Asilah Wati Abdul Hamid. 2019. Nonnegative matrix factorization and
metamorphic malware detection. Journal of Computer Virology and Hacking Tech-
niques 15, 3 (2019), 195–208.

Liu et al.(2017). Liu Liu, Bao-sheng Wang, Bo Yu, and Qiu-xi Zhong. 2017. Auto-
matic malware classification and new malware detection using machine learning.
Frontiers of Information Technology & Electronic Engineering 18, 9 (2017), 1336–
1347.

Liu et al.(2020). Xinbo Liu, Yaping Lin, He Li, and Jiliang Zhang. 2020. A novel
method for malware detection on ML-based visualization technique. Computers &
Security 89 (2020), 101682. https://doi.org/10.1016/j.cose.2019.101682

Loi et al.(2021). Nicola Loi, Claudio Borile, and Daniele Ucci. 2021. Towards an Auto-
mated Pipeline for Detecting and Classifying Malware through Machine Learning.
arXiv preprint arXiv:2106.05625 (2021).

Maciá-Fernández et al.(2018). Gabriel Maciá-Fernández, José Camacho, Roberto
Magán-Carrión, Pedro Garćıa-Teodoro, and Roberto Therón. 2018. UGR’16: A
new dataset for the evaluation of cyclostationarity-based network IDSs. Comput.
Secur. 73 (2018), 411–424. https://doi.org/10.1016/j.cose.2017.11.004

Maruhashi et al.(2011). Koji Maruhashi, Fan Guo, and Christos Faloutsos. 2011. Mul-
tiAspectForensics: Pattern Mining on Large-Scale Heterogeneous Networks with

https://doi.org/10.1145/3297280.3297415
https://doi.org/10.1109/GlobalSIP.2018.8646694
https://doi.org/10.1137/07070111X
https://doi.org/10.1145/2487575.2488219
https://doi.org/10.1145/2487575.2488219
https://doi.org/10.1109/PCi.2012.60
https://doi.org/10.1109/PCi.2012.60
https://doi.org/10.1016/j.cose.2019.101682
https://doi.org/10.1016/j.cose.2017.11.004

Classifying Malware using Tensor Decomposition 33

Tensor Analysis. In 2011 International Conference on Advances in Social Net-
works Analysis and Mining. IEEE, 203–210. https://doi.org/10.1109/ASONAM.

2011.80

Mohaisen et al.(2015). Aziz Mohaisen, Omar Alrawi, and Manar Mohaisen. 2015.
AMAL: High-fidelity, behavior-based automated malware analysis and classifica-
tion. Computers & Security 52 (2015), 251–266. https://doi.org/10.1016/j.

cose.2015.04.001

Narayanan and Davuluru(2020). Barath Narayanan Narayanan and Venkata
Salini Priyamvada Davuluru. 2020. Ensemble Malware Classifica-
tion System Using Deep Neural Networks. Electronics 9, 5 (2020).
https://doi.org/10.3390/electronics9050721

pandas development team(2020). The pandas development team. 2020. pandas-
dev/pandas: Pandas. Zenodo. https://doi.org/10.5281/zenodo.3509134

Pedregosa et al.(2011). F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
2011. Scikit-learn: Machine Learning in Python. Journal of Machine Learning
Research 12 (2011), 2825–2830.

Pham et al.(2018). Huu-Danh Pham, Tuan Dinh Le, and Thanh Nguyen Vu. 2018.
Static PE Malware Detection Using Gradient Boosting Decision Trees Algorithm.
In Future Data and Security Engineering, Tran Khanh Dang, Josef Küng, Roland
Wagner, Nam Thoai, and Makoto Takizawa (Eds.). Springer International Pub-
lishing, Cham, 228–236.

Qi et al.(2021). Panpan Qi, Wei Wang, Lei Zhu, and See Kiong Ng. 2021. Unsuper-
vised Domain Adaptation for Static Malware Detection Based on Gradient Boost-
ing Trees. Association for Computing Machinery, New York, NY, USA, 1457–1466.
https://doi.org/10.1145/3459637.3482400

Qi et al.(2016). Yang Qi, Pierre Comon, and Lek-Heng Lim. 2016. Semialgebraic Ge-
ometry of Nonnegative Tensor Rank. SIAM J. Matrix Anal. Appl. 37 (2016),
1556–1580.

R. and K.P.(2018). Vinayakumar R. and Soman K.P. 2018. DeepMalNet: Evaluating
shallow and deep networks for static PE malware detection. ICT Express 4, 4
(2018), 255–258. https://doi.org/10.1016/j.icte.2018.10.006

Rabanser et al.(2017). Stephan Rabanser, Oleksandr Shchur, and Stephan
Günnemann. 2017. Introduction to Tensor Decompositions and their Appli-
cations in Machine Learning. ArXiv abs/1711.10781 (2017).

Raff et al.(2018). Edward Raff, Jon Barker, Jared Sylvester, Robert Brandon, Bryan
Catanzaro, and Charles K. Nicholas. 2018. Malware Detection by Eating a Whole
EXE. In AAAI Workshops. AAAI.

Raff and Nicholas(2020). Edward Raff and C. Nicholas. 2020. A Survey of Machine
Learning Methods and Challenges for Windows Malware Classification. ArXiv
abs/2006.09271 (2020).

Raff et al.(2020). Edward Raff, Charles K. Nicholas, and Mark McLean. 2020. A New
Burrows Wheeler Transform Markov Distance. In AAAI. AAAI.

Ramadhan et al.(2021). Fauzan Hikmah Ramadhan, Vera Suryani, and Satria Man-
dala. 2021. Analysis Study of Malware Classification Portable Executable Using
Hybrid Machine Learning. In 2021 International Conference on Intelligent Cyber-
netics Technology Applications (ICICyTA). IEEE, 86–91. https://doi.org/10.

1109/ICICyTA53712.2021.9689130

https://doi.org/10.1109/ASONAM.2011.80
https://doi.org/10.1109/ASONAM.2011.80
https://doi.org/10.1016/j.cose.2015.04.001
https://doi.org/10.1016/j.cose.2015.04.001
https://doi.org/10.3390/electronics9050721
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.1145/3459637.3482400
https://doi.org/10.1016/j.icte.2018.10.006
https://doi.org/10.1109/ICICyTA53712.2021.9689130
https://doi.org/10.1109/ICICyTA53712.2021.9689130

34 Eren et al.

Roseline et al.(2019). S. Abijah Roseline, A. D. Sasisri, S. Geetha, and C. Balasub-
ramanian. 2019. Towards Efficient Malware Detection and Classification using
Multilayered Random Forest Ensemble Technique. In 2019 International Carna-
han Conference on Security Technology (ICCST). IEEE, 1–6. https://doi.org/

10.1109/CCST.2019.8888406

Sikorski and Honig(2012). Michael Sikorski and Andrew Honig. 2012. Practical mal-
ware analysis: the hands-on guide to dissecting malicious software. no starch press.

Sun et al.(2017). Bowen Sun, Qi Li, Yanhui Guo, Qiaokun Wen, Xiaoxi Lin, and Wen-
han Liu. 2017. Malware family classification method based on static feature ex-
traction. In 2017 3rd IEEE International Conference on Computer and Commu-
nications (ICCC). IEEE, 507–513. https://doi.org/10.1109/CompComm.2017.

8322598

Sun et al.(2006). Jimeng Sun, Dacheng Tao, and Christos Faloutsos. 2006. Beyond
streams and graphs: dynamic tensor analysis. In KDD ’06. ACM.

The Independent IT Security Institute(2022). The Independent IT Security Institute.
2022. Malware Statistics & Trends Report: AV-TEST. https://www.av-test.

org/en/statistics/malware/

Vangara et al.(2020). R. Vangara, E. Skau, G. Chennupati, H. Djidjev, T. Tierney,
J. P. Smith, M. Bhattarai, V. G. Stanev, and B. S. Alexandrov. 2020. Semantic
Nonnegative Matrix Factorization with Automatic Model Determination for Topic
Modeling. In 2020 19th IEEE International Conference on Machine Learning and
Applications (ICMLA). IEEE, 328–335. https://doi.org/10.1109/ICMLA51294.

2020.00060

Verizon(2021). Verizon. 2021. Data Breach Investigations Report 2021. Techni-
cal Report. Verizon. 119 pages. https://enterprise.verizon.com/resources/

reports/dbir/

Vinayakumar et al.(2019). R. Vinayakumar, Mamoun Alazab, K. P. Soman, Praba-
haran Poornachandran, and Sitalakshmi Venkatraman. 2019. Robust Intelligent
Malware Detection Using Deep Learning. IEEE Access 7 (2019), 46717–46738.
https://doi.org/10.1109/ACCESS.2019.2906934

Wang et al.(2021). Shuwei Wang, Qiuyun Wang, Zhengwei Jiang, Xuren Wang, and
Rongqi Jing. 2021. A Weak Coupling of Semi-Supervised Learning with Gen-
erative Adversarial Networks for Malware Classification. In 2020 25th Interna-
tional Conference on Pattern Recognition (ICPR). IEEE, 3775–3782. https:

//doi.org/10.1109/ICPR48806.2021.9412832

Wes McKinney(2010). Wes McKinney. 2010. Data Structures for Statistical Comput-
ing in Python. In Proceedings of the 9th Python in Science Conference, Stéfan
van der Walt and Jarrod Millman (Eds.). SciPy, 56–61. https://doi.org/10.

25080/Majora-92bf1922-00a

Wu and Yang(2007). Kuo-Lung Wu and Miin-Shen Yang. 2007. Mean Shift-Based
Clustering. Pattern Recogn. 40, 11 (nov 2007), 3035–3052. https://doi.org/10.

1016/j.patcog.2007.02.006

Xie et al.(2017). Kun Xie, Xiaocan Li, Xin Wang, Gaogang Xie, Jigang Wen, Jiannong
Cao, and Dafang Zhang. 2017. Fast Tensor Factorization for Accurate Internet
Anomaly Detection. IEEE/ACM Transactions on Networking 25, 6 (2017), 3794–
3807. https://doi.org/10.1109/TNET.2017.2761704

Yan et al.(2018). Jinpei Yan, Yong Qi, and Qifan Rao. 2018. Detecting malware with
an ensemble method based on deep neural network. Security and Communication
Networks 2018 (2018).

https://doi.org/10.1109/CCST.2019.8888406
https://doi.org/10.1109/CCST.2019.8888406
https://doi.org/10.1109/CompComm.2017.8322598
https://doi.org/10.1109/CompComm.2017.8322598
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://doi.org/10.1109/ICMLA51294.2020.00060
https://doi.org/10.1109/ICMLA51294.2020.00060
https://enterprise.verizon.com/resources/reports/dbir/
https://enterprise.verizon.com/resources/reports/dbir/
https://doi.org/10.1109/ACCESS.2019.2906934
https://doi.org/10.1109/ICPR48806.2021.9412832
https://doi.org/10.1109/ICPR48806.2021.9412832
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1016/j.patcog.2007.02.006
https://doi.org/10.1016/j.patcog.2007.02.006
https://doi.org/10.1109/TNET.2017.2761704

Classifying Malware using Tensor Decomposition 35

Yarowsky(1995). David Yarowsky. 1995. Unsupervised Word Sense Disambiguation
Rivaling Supervised Methods. In Proceedings of the 33rd Annual Meeting on As-
sociation for Computational Linguistics (Cambridge, Massachusetts) (ACL ’95).
Association for Computational Linguistics, USA, 189–196. https://doi.org/10.

3115/981658.981684

Ye et al.(2010). Yanfang Ye, Tao Li, Yong Chen, and Qingshan Jiang. 2010. Auto-
matic Malware Categorization Using Cluster Ensemble. In Proceedings of the 16th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing (Washington, DC, USA) (KDD ’10). Association for Computing Machinery,
New York, NY, USA, 95–104. https://doi.org/10.1145/1835804.1835820

Yuan et al.(2020). Baoguo Yuan, Junfeng Wang, Dong Liu, Wen Guo, Peng Wu, and
Xuhua Bao. 2020. Byte-level malware classification based on markov images and
deep learning. Computers & Security 92 (2020), 101740. https://doi.org/10.

1016/j.cose.2020.101740

Zhang et al.(2019). Shao-Huai Zhang, Cheng-Chung Kuo, and Chu-Sing Yang. 2019.
Static PE Malware Type Classification Using Machine Learning Techniques. In
2019 International Conference on Intelligent Computing and its Emerging Appli-
cations (ICEA). IEEE, 81–86. https://doi.org/10.1109/ICEA.2019.8858297

Zhang et al.(2017). Yunan Zhang, Chenghao Rong, Qingjia Huang, Yang Wu, Zem-
ing Yang, and Jianguo Jiang. 2017. Based on Multi-features and Clustering
Ensemble Method for Automatic Malware Categorization. In 2017 IEEE Trust-
com/BigDataSE/ICESS. IEEE, 73–82. https://doi.org/10.1109/Trustcom/

BigDataSE/ICESS.2017.222

https://doi.org/10.3115/981658.981684
https://doi.org/10.3115/981658.981684
https://doi.org/10.1145/1835804.1835820
https://doi.org/10.1016/j.cose.2020.101740
https://doi.org/10.1016/j.cose.2020.101740
https://doi.org/10.1109/ICEA.2019.8858297
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.222
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.222

	Classifying Malware using Tensor Decomposition

